Due Dec. 744

Evaluating the Drake Equation

1 Introduction

The Drake equation provides a means of estimating the number of communicable civilizations (N) that exist in our galaxy today.

$$N = R_{\bullet} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L.$$

where

- R. = starformation rate (number of stars born per year)
- f_p = fraction of stars with planets
- n_e = number of Earth-like planets around each star
- f_l = fraction of planets where life emerges :
- f_i = fraction of life-bearing planets where intelligent species emerge
- f_c = fraction of planets where intelligent life has the technology, resources and desire to communicate over interstellar distances
- L = average lifetime of a communicable civilization (in years)

2 Questions

- 1. Combining your own intuition with what you have learned in class and elsewhere, estimate each of the seven parameters on the right-hand side of the Drake equation. Enter your estimates of the parameters on the accompanying table (Table 1). Provide a brief explanation of how you arrived at your estimates.
- 2. Evaluate the Drake equation using your estimates. Enter the result in Table 1.
- 3. Assuming there are 4×10^{11} stars in our galaxy, how many stars would you need to survey before you are likely to find another communicable civilization?
- 4. What is your estimated birthrate for:
 - (a) planets with life?
 - (b) planets with intelligent life?
 - (c) planets with communicable civilizations?
- 5. If you were on a starship with a mission to catalog life forms on other planets, how much more likely is it that you would find planets with microbial life than planets with communicable civilizations?

R.	1	n_e	f_l	f_i	fc	L	.V

Table 1: Parameters of the Drake Equation

6. Using the equations in the E.T. text and your value for N, estimate the average distance between communicable civilizations in the Milky Way galaxy.

- 7. As we discussed in lecture, radio provides both the fastest and cheapest way we know of to communicate between the stars. Using a large array of antennae (such as is envisioned with Project Cyclops), assume we can detect an alien beacon after "listening" toward a star in ~10 seconds. Using your answer from (3), estimate how many years it would take to find the nearest communicable civilization.
- 8. Write a couple of paragraphs on why you might search for extra-terrestrial intelligence.
- 9. Assume it takes 10 million dollars a year to keep the SETI program going. What will be the total expenditure on the program before it is likely to result in a positivite detection of another civilization?
- 10. Do you think such expenditures in time and money are justified? (Explain.)